\qquad
\qquad
\qquad

Lesson Practice B

8-1 Similarity in Right Triangles

Write a similarity statement comparing the three triangles in each diagram.
1.

2.

3.

Find the geometric mean of each pair of numbers. If necessary, give the answer in simplest radical form.
4. $\frac{1}{4}$ and 4 \qquad 5. 3 and 75
8. 10 and 14 \qquad 9. 4 and 12.25
7. $\frac{1}{2}$ and 9 \qquad
6. 4 and 18
\qquad

Find x, y, and z.
10.

11.

12.

13.

14.

15.

16. The Coast Guard has sent a rescue helicopter to retrieve passengers off a disabled ship. The ship has called in its position as 1.7 miles from shore. When the helicopter passes over a buoy that is known to be 1.3 miles from shore, the angle formed by the shore, the helicopter, and the disabled ship is 90°. Determine what the altimeter would read to the nearest foot when the helicopter is directly above the buoy.

Use the diagram to complete each equation.
17. $\frac{e}{b}=\frac{\square}{e}$
18. $\frac{d}{b+c}=\frac{\square}{a}$
19. $\frac{d}{\square}=\frac{a}{e}$

Practice A

Similarity in Right Triangles
In Exercises 1 and 2, fill in the blanks to complete each theorem or definition.

1. The geometric mean of two positive numbers is the positive_square root of their product.
2. The altitude to the hypotenuse of a right triangle forms two triangles that are similar to each other and to the original triangle.
3. Write a similarity statement comparing the three triangles Be sure to write the vertices in the correct order.
$\triangle A B C \sim \triangle D B A \sim \triangle D A C$ \qquad

Find the geometric mean of each pair of numbers.
4. 3 and $12 \quad 6$
5. 9 and $16 \quad 12$
6. 4 and $25 \quad 10$

Use the figure for Exercises 7-11. The big right triangle is divided by an altitude into two smaller right triangles. The smaller triangles are also shown separated from the big triangle. All three triangles are similar. For Exercises 7-9 complete each similarity ratio comparing similar. For Exercises 7-9
the indicated side lengths

7. legs of triangles 2 and $3: \frac{h}{x}=\frac{y}{\boxed{h}}$
8. shorter legs and the hypotenuses of triangles 1 and $3: \frac{a}{x}=\frac{\square}{\square a}$
9. longer legs and the hypotenuses of the triangles 1 and $2: \frac{b}{y}=\frac{c}{\square b}$
10. Find the cross product of your answer to Exercise 7 to prove Theorem 8-1-2. $h^{2}=\underline{x y}$
11. Find the cross products of your answers to Exercises 8 and 9 to prove Theorem 8-1-3.

$$
a^{2}=\underline{x C} \quad b^{2}=\underline{y c}
$$

12. Find h, a, and b. Write your answer in simplest radical form, if necessary.
$h=4 \quad a=\underline{4} \sqrt{5} \quad b=\underline{2 \sqrt{5}} \quad \frac{h}{2} b$

3
Holt Geometry

Practice C

8-1 Similarity in Right Triangles

Find x and y.

$19-\sqrt{105} ; 19+\sqrt{105}$
$30 ; 10 \sqrt{3}$
4. The arithmetic mean is also known as the average. Name the conditions under which two nonzero, positive numbers, a and b, have equal geometric and arithmetic means.
\boldsymbol{a} and \boldsymbol{b} have the same geometric and arithmetic means if $\boldsymbol{a}=\boldsymbol{b}$.
5. Sketch a right triangle in which the segments of the hypotenuse formed by the altitude to the hypotenuse have the same geometric and arithmetic means.

6. Give all three angle measures of the triangle you drew in Exercise 5. $45^{\circ}, 45^{\circ}, 90^{\circ}$
7. Name the conditions under which two nonzero, positive numbers, a and b, have an arithmetic mean that is less than their geometric mean.
There are no conditions under which the arithmetic mean will be less than the geometric mean.

Greg is interested in buying a plot of land. He is looking at a plot in the shape of a right triangle. A dirt road makes an altitude to the longest side of the plot and cuts the longest side into two parts that measure 65 feet and 83 feet.
8. Find the area of the land to the nearest square foot

	$5435 \mathrm{ft}^{2}$
$357 \mathrm{ft}$	
$\frac{15}{4}=3 \frac{3}{4} \mathrm{in} .$	$3 \frac{3}{4}$ in.
$\frac{20}{3}=6 \frac{2}{3} \mathrm{in} .$	
$\frac{5}{12} \sqrt{193} \text { in. } \approx$	$93 \mathrm{in} . \approx 5 \frac{3}{4} \mathrm{in}$.

Use the figure for Exercises 11-12.
The figure shows $\triangle A B C$.
$A B=3$ in. and $A C=4$ in

$$
\begin{aligned}
& \frac{15}{4}=3 \frac{3}{4} \mathrm{in} . \\
& \frac{20}{3}=6 \frac{2}{3} \mathrm{in} . \\
& \frac{5}{12} \sqrt{193} \mathrm{in} . \approx 5 \frac{3}{4} \mathrm{in} .
\end{aligned}
$$

. Point D is placed so that $\angle C B D$ is a right angle and D is on $\overleftrightarrow{A C}$ Find $B D$.
11. Point E is placed so that $\angle B C E$ is a right angle and E is on $\overleftrightarrow{A B}$ Find $C E$.
12. Find $D E$.

Holt Geometry

Practice B

Similarity in Right Triangles

Write a similarity statement comparing the three triangles in each diagram.

1.

Possible answers:
$\triangle J K L \sim \triangle J L M \sim$
2.

3.

\triangle LKM
$\triangle D E F \sim \triangle G E D \sim$
$\triangle W X Y \sim \triangle Z X W \sim$

Find the geometric mean of each pair of numbers. If necessary, give the answer in simplest radical form.
4. $\frac{1}{4}$ and $4 \frac{1}{\underline{3 \sqrt{2}}}$
5. 3 and $75 \quad 15$
6. 4 and $18 \quad 6 \sqrt{2}$
7. $\frac{1}{2}$ and $9 \quad \frac{3}{2}$
8. 10 and $14 \xrightarrow{2 \sqrt{35}}$
9. 4 and $12.25 \quad 7$

Find x, y, and z.

10.

$\sqrt{35} ; 2 \sqrt{15} ; 2 \sqrt{21}$
$30 ; 10 \sqrt{3} ; 20 \sqrt{3}$
13.

14.

16. The Coast Guard has sent a rescue helicopter to retrieve passengers off a disabled ship. The ship has called in its position as 1.7 miles from shore. When the helicopter passes over a buoy that is known to be 1.3 miles from shore, the angle formed by the shore, the helicopter, and the disabled ship is 90°. Determine what the altimeter would read to the nearest foot when the helicopter is directly above the buoy 3,807 feet
15.

Use the diagram to complete each equation.
17. $\frac{e}{b}=\frac{C}{e}$
18. $\frac{d}{b+c}=\frac{e}{a}$
19. $\frac{d}{|c|}=\frac{a}{e}$

4 Holt Geometry

Reteach

8.1 Similarity in Right Triangles

Altitudes and Similar Triangles			
The altitude to the hypotenuse of a right triangle forms two			
triangles that are similar to each other and to the original triangle.			

Similarity statement: $\triangle A B C \sim \triangle A D B \sim \triangle B D C$
The geometric mean of two positive numbers is the positive square root of their product.
Find the geometric mean of 5 and 20.
Let x be the geometric mean.
$x^{2}=(5)(20)$
Definition of geometric mean
$x^{2}=100 \quad$ Simplify. $\quad x^{2}=a b$
$x=10 \quad$ Find the positive square root. $\quad x=\sqrt{a b}$

So 10 is the geometric mean of 5 and 20 .

Write a similarity statement comparing the three triangles in each diagram.
1.

$\triangle M N L \sim \triangle N P L \sim \triangle M P N$
2.

$\triangle F G H \sim \triangle F J G \sim \triangle G J H$

Find the geometric mean of each pair of numbers. If necessary, give the answer in simplest radical form.

3. 3 and 27		4. 9 and 16	
9		12	
5. 4 and 5		6. 8 and 12	
$2 \sqrt{5}$		$4 \sqrt{6}$	
	6		Holt Geometry

